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Appendix A. Properties of SimHash

Let a and b be vectors on the unit hypersphere in the Euclidean space Rd with angle θ
between them, and let u be a random d-dimensional vector whose coordinates are sampled
independently from N(0, 1). Note that the probability that the two vectors end up on a
different side of the hyperplane is

P(sign(a · u) 6= sign(b · u)) = 1− P(sign(a · u) = sign(b · u)) (10)

= 1− θ

π
(11)

Let the random variable X have value 1 if a and b are on different sides of u, and 0 otherwise.
Then:

E[X] = 1− θ

π
(12)

V[X] =
θ

π

(
1− θ

π

)
(13)

If we let the family of random variables X1, ..., Xn be the result of repeating this process
several times with independently randomly chosen hyperplanes, then we have:

E[
1

n

n∑
i=1

Xi] = 1− θ

π
(14)

V[
1

n

n∑
i=1

Xi] =
1

n2

n∑
i=1

V[Xi] =
1

n
· θ
π

(
1− θ

π

)
(15)

Set Xn = 1
n

∑
i=1Xi. Then we have that E[π(1 − Xn)] = θ, suggesting that we use

cos(π(1 −Xn)) as an estimator for cos(θ). Let g(x) = cos(π(1 − x)) and Cn = g(Xn) be
this estimator. We now explore some properties of Cn.

Lemma A.1. Cn is consistent. In particular, Cn
a.s.−−→ cos(θ).

Proof. By the strong law of large numbers, we have that Xn
a.s.−−→ 1 − θ

π . Since g is
continuous, by the continuous mapping theorem [Van Der Vaart, 1998],

g(Xn)
a.s.−−→ g(1− θ

π
) = cos(θ)

Lemma A.2. E[Cn] = cos(θ) + En, where |En| ≤ π2

8n

Proof. Set µ = E[Xn] = 1− θ
π . The first degree Taylor series for g(x) about µ is:

g(x) = cos(θ) + π sin(θ)(x− µ) +R(x)

where R is the remainder term. Applying Lagrange’s remainder formula, we have that for
each x, there exists some h(x) lying between µ and x such that:

R(x) =
π2 cos(πh(x))

2
(x− µ)2
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We have then that:

E[g(Xn)] = cos(θ) + π sin(θ)(E[Xn]− µ) + E[R(Xn)] (16)

= cos(θ) + E[R(Xn)] (17)

Thus it suffices to bound |E[R(Xn)]|. We have:

|E[R(Xn)]| ≤ E[|R(Xn)|] (18)

= E[|π
2 cos(πh(Xn))

2
|(Xn − µ)2] (19)

≤ E[
π2

2
(Xn − µ)2] (20)

=
π2

2
V[Xn] (21)

=
π2

2
· 1

n
· θ
π

(1− θ

π
) (22)

≤ π2

2
· 1

4n
=
π2

8n
(23)

Lemma A.3. V[Cn] = π2 sin2(θ)
n · θπ (1− θ

π ) +O(n−3/2)

Proof. Before delving into the details, let us sketch the idea. The Taylor approximation
for g shows us that g(x) ≈ cos(θ) + π sin(θ)(x− µ). So, recalling that V[Cn] = V[g(Xn)] =
E[g(Xn)2]− E[g(Xn)]2, and plugging in the approximation we get:

V[g(Xn)] ≈ E[
(
cos(θ) + π sin(θ)(Xn − µ)

)2
]− cos(θ)2 (24)

= 2π sin(θ)E[Xn − µ] + π2 sin2(θ)E[(Xn − µ)2] (25)

= π2 sin2(θ)E[(Xn − µ)2] (26)

Now, to get the actual error term, we carry out the same process without dropping the
remainder term R(x) from the Taylor expansion. We have:

V[g(Xn)] = E[
(
cos(θ) + π sin(θ)(Xn − µ) +R(Xn)

)2
]−
(
cos(θ) + E[R(Xn)]

)2
(27)

= cos(θ)2 + 2 cos(θ)E[R(Xn)] + E[R(Xn)2] + 2π cos(θ) sin(θ)E[Xn − µ] (28)

+ 2π sin(θ)E[R(Xn)(Xn − µ)] + π2 sin2(θ)E[(Xn − µ)2] (29)

−
(
cos(θ) + E[R(Xn)]

)2
(30)

= π2 sin2(θ)V[Xn]− E[R(Xn)]2 + E[R(Xn)2] + 2π sin(θ)E[R(Xn)(Xn − µ)]
(31)
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It suffices to bound the last three terms. From the previous result, we know that the
first of these three terms is the square of something which is O(1/n). For the second,

|E[R(Xn)2]| = E[R(Xn)2] (32)

= E[
π4 cos2(πh(Xn))

4
(Xn − µ)4] (33)

≤ π4

4
E[(Xn − µ)4] (34)

Let p = θ/π. Then

E[(Xn − µ)4] =
3np4 − 6np3 + 3np2 − 6p4 + 12p3 − 7p2 + p

n3
(35)

≤ 6n+ 13

n3
(36)

so that

|E[R(Xn)2]| ≤ π4(6n+ 13)

4n3
(37)

For the final term, we have:

|E[R(Xn)(Xn − µ)]| ≤
√
E[R(Xn)2]E[(Xn − µ)2] (38)

≤
√
π4(6n+ 13)

n3
· 1

n
· θ
π

(1− θ

π
) (39)

≤
√
π4(6n+ 13)

n4
· θ
π

(1− θ

π
) (40)

which is O(n−3/2)

Lemma A.4. P(|Cn − cos(θ)| > δ + π2

8n) ≤ 2e−2nδ
2/π2

Proof. Define fn : [0, 1]n → R by fn(x1, . . . , xn) = cos(π(1− 1
n

∑n
i=1 xi)). Then fn(X1, . . . , Xn) =

Cn. We now show that for all i, and x1, . . . , xn ∈ [0, 1]n and x′i ∈ [0, 1],

|fn(x1, . . . , xi, . . . , xn)− fn(x1, . . . , x
′
i, . . . , xn)| ≤ π

n
|xi − x′i|

Fix i and x1, . . . , xi−1, xi+1, . . . , xn, and consider the function

h(x) = fn(x1, . . . , xi−1, x, . . . , xn)

Then, by the mean value theorem, for all xi, x
′
i ∈ [0, 1], there exists some x∗ ∈ [0, 1] such

that:

h(xi)− h(x′i) = h′(x∗)(xi − x′i)

=
π

n
sin

(
π

(
1− 1

n
(x1 + · · ·+ x∗ + · · ·+ xn)

))
(xi − x′i)
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Hence |h(xi) − h(x′i)| ≤ π
n |xi − x

′
i|. Since the function fn is Lipschitz continuous in each

coordinate with parameter π
n , by the method of bounded differences [Dubhashi and Panconesi,

2009, Corollary 5.2], we have:

P(|fn(X1, . . . , Xn)− E[fn(X1, . . . , Xn)]| > δ) ≤ 2e−2nδ
2/π2

Moreover, from above we have that |E[Cn]− cos(θ)| < π2

8n . Hence,

P(|Cn − cos(θ)| > δ +
π2

8n
) ≤ 2e−2nδ

2/π2

The above bound is uniform over θ, but stronger bounds for very small or large values of
θ can be obtained as follows: Set p = 1− θ/π and apply standard Chernoff bounds to the
binomial variable Xn. Then observe that if Xn deviates from its mean by no more than δ
with high probability, then g(Xn) is within | sup

p−δ≤t≤p+δ
g′(t)|δ around cos(θ) with at least

the same high probability.

Appendix B. Model and parameter estimation

Features Here we provide more details about the features. First recall that we employ
two types of feature variables, a “name bag” that represents the features of the authors
name and a “context bag” that represents the remaining features in the citation from which
the author mention is extracted. We populate the “name” bag of each mention with the
full name, the first-initial last name, and character tri-grams of the author’s name string as
it appears in the mention. We populate the “context” features of each mention with the
title and venue, the co-authors with whom the paper is authored, author-provided keywords
for the paper. For the title we employ white-space tokenization, character 3-grams and
4-grams, for venue we employ white-space tokenization as well as the entire string and for
co-authors we employ the first-initial last-name of all co-authors. Finally for topics, we take
the top 3 topics for each citation as determined by a 200-topic LDA model trained on all
of DBLP and REXA combined. We employ the training data to experiment with several
feature combinations, including using all 200-topics for each citation, but found that this
combination of features works best.

For the exact sparse-vector representations, we employ the default implementation in
FACTORIE, which employs hashmaps to store the non-zero features and their corresponding
weights. For the simhash representation we employ a java implementation of murmurhash3
to hash each feature to construct the initial dense bit vectors that underly the homomorphic
simhash representation of the mentions. These vectors are then added and subtracted during
inference to produce the underlying vectors of the entities and subentities on which the
actual bits are computed.

Parameter estimation Following previous work, we manually tune the model with exact
feature representations on the training data with the help of hyper-parameter search. We
use identical parameters for the simhash model, except we lower the translation value
for the context bag to compensate for the extra variance that can increase the chance of
false-positives. More details follow below.
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Model B3 MUC

Precision Recall F1 Precision Recalll F1

exact 75.3 82.2 78.6 88.3 91.2 89.7
simhash 256 74.3 81.2 77.6 86.5 88.8 87.7
simhash 128 76.1 75.1 75.6 86.8 87.1 86.9
simhash 64 66.0 60.0 62.8 81.2 82.4 81.8
simhash 32 58.0 53.4 55.6 75.8 80.3 78.0

jl 258 73.5 83.9 78.3 87.1 91.2 89.1
jl 128 74.9 77.1 75.9 87.4 87.4 87.4
jl 64 77.2 60.8 68.0 85.7 82.6 84.1
jl 32 74.6 60.0 66.5 84.4 82.6 83.6

Table 1: Author coreference evaluation on REXA with B3 and MUC evaluation measure.

The model comprises only a small handful of parameters: a weight and translation
parameter for each bag, and a prior on the number of entities and subentities. Since the prior
is somewhat redundant to the translation parameters, we fix the prior to zero and do not tune
it. We also fix the parameter for the number of subentities to -0.5 to penalize deeper trees.
Then, we tune the remaining parameters manually with the assistance of hyper-parameter
search. We explore weight values in the set {0.0, 1.0, 2.0, 4.0} and translation values in the
set {−0.75,−0.5,−0.25, 0.0}. For the model that employs exact feature representations, we
found a weight of 4.0 and translation of -0.5 works best on the training data for the model
that employs exact feature representations. Since the variance of the Simhash estimator
increases with the angles, false-positives become a potential issue. Therefore, to compensate
for this extra variance, we set the translation for the context bag of the simhash model more
aggresively to −0.6 via binary search with the training data and 128-bit model (the other
simhash models were not further tuned and employ the same parameters as the 128-bit
model).

Appendix C. Detailed coreference results

C.1 Evaluation on REXA

Table 1 contains a more detailed set of results on the REXA author coreference data. We
evaluate with both B-cubed (B3) and MUC precision, recall and F1. The results in this
table employ all the features of the author mention. For feature ablations, see Table 2 in
the sequel.

C.2 Feature ablations

As we speculate in Section 4, we might also be able to improve the speed of the exact model
by including fewer features since this would reduce the cost of dynamically updating the
sparse-vector representations. To this end, we perform some feature ablations by trying
various subsets of the six feature-types: name, topic, co-authors, venue, keywords, and title
(with and without n-grams), re-tuning the model on the training set and then reporting the
accuracy on the test-set. Note that for the exact model, changing the number of features
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Figure 3: Comparison of the hierarchical coreference models that employ either simhash
or exact sparse-vector representations of the features. We removed the n-gram
features to improve the run-time of the exact representation on the larger dataset,
but this comes at the expense of lower accuracy.
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Features Sample/sec Precision Recall F1 (B-cubed)

name 16750 77.0 44.6 56.5
+topics 8733 75.6 57.5 65.3
+co-authors 1269 75.7 52.3 61.9
+venue 7451 48.3 76.6 59.2
+title 1973 73.6 87.4 79.9
+topics+coauth 13262 75.9 56.9 65.0

all but title 6858 71.0 64.8 67.7
all with title (no n-grams) 10309 71.4 85.2 75.9
all 1835 72.6 86.0 78.7

all (simhash 256 bit) 16556 75.2 81.4 78.2
all (simhash 128 bit) 19841 72.6 82.3 77.2
all (simhash 64 bit) 22988 64.7 65.7 65.2
all (simhash 32 bit) 19417 57.4 59.1 58.3

Table 2: Feature ablations on the test set. B-cubed precision (p), recall (r), and F1. We
can see that more features help, but come at a price: slower inference (measured
as samples per second).

affects both the quality of the model and its speed, but for the simhash model, it only affects
the quality since the representation is fixed in dimension. Therefore, in the spirit of the
tradeoff, we include all features for simhash and instead vary the number of bits.

For the feature ablation study, we record the samples per second and the B-cubed F1
on the REXA test set and plot these points in Figure 5 with speed (samples per second)
on the x-axis and F1 on the y-axis. Points in the upper-left correspond to models that are
accurate, but slow, while points in the lower-right correspond to models that are fast, but
inaccurate. Points in the upper-right correspond to models that are both fast and accurate.
As we can see, varying the number of features for the exact model indeed improves the
performance, but it often comes at the expense of accuracy. The simhash models on the
other hand (indicated by red triangles) are able to achieve both speed and accuracy, given
enough bits. This scatter plot is intended to understand the trade-off space and we omit the
labels on the points to reduce clutter. Instead, we provide these details in a separate table
(Table 2).

From these ablations we can see that the best speed-accuracy trade-off for the exact
model employs all the features except for the title n-grams. Indeed, the title n-grams are the
main culprit for slowing down the exact model since they explode the number of features.
Thus, we repeat the experiment for Figure 2 (Experiment 2 in Section 4), with this reduced
set of features and manage to improve the running time of the exact model to the point at
which the simhash model is only 2-3 times faster. In these experiments, the exact model is
much faster than when it had to cope with the entire set of features, and achieves around
7000 samples per second before eventually falling to 5000 as the entities get larger.

While reducing the features is a reasonable strategy for improving the inference speed
without resorting to simhash, it also has several drawbacks. First, reducing the number
of features can have a negative affect on the accuracy, as we see in Figure 5. When run
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Figure 4: A comparison of exact cosine with two sim-hash approximations. The first is the
usual linear approximation, depicted as the linear curve with error bars. The
second is as an estimator for cos(theta), depicted as the error bars on the exact
cosine curve (standard-error of 32-bit hash).

exclusively on the labeled data, the final F1 drops to 75.9, which is lower than the 256-bit
simhash model (77.6 F1), while also being twice as slow. In addition, this strategy of
reducing the feature space will not work as well in other coreference domains. For example,
in author coreference, the true size of author entities is limited by the number of papers the
author publishes. It is unlikely that many authors publish more than 1000 papers, and the
average is likely to be much smaller. Thus, we can reasonably manage the size of the entity
and sub-entity bags simply by reducing the number of features in each mention. In contrast,
consider the problem of cross-document coreference on newswire data. The entity “United
States” might be mentioned more than a million times in vastly different contexts. Thus,
even if we limited the feature-space in the beginning, it is likely that these large entities
will still accumulate a large number of features anyway. Models based on simhash will not
succumb to this problem. Finally, the simhash representation is appealing because it allows
a practitioner to focus on achieving high accuracy with the full flexibility and freedom when
engineering features, without having to worry about the running-time performance (an
experiment like the type we did in Experiment 1 would help the practitioner set the number
of bits without the need for labeled data).

C.3 Note on Memory Use

Our implementation employs 32-bit floats to represent the homomorphic simhash statistics,
which results in a memory use of k ∗ 32, or between 1kb-8kb per node depending on the
number of dimensions. This could be substantially reduced using integer representations
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Figure 5: Accuracy versus speed as we vary the number of features for the exact model and
number of bits for simhash.

with fewer bits or approximate counters. Although this would still require more memory
than non-homomorphic simhash, in the context of hierarchical coreference, the memory use
is still small, and often better than the original representation.

Appendix D. Johnson-Lindenstrauss Results

Here we include the details results associated with Experiment 3 in Section 4 in the main
paper.

In Figure 6, we compare simhash to the random projection approach, which we abbreviate
as JL (for Johnson-Lindenstrauss, since it falls under the purvue of these lemmas). The
experiment is analogous to Experiment 1, except that when we run MCMC inference to
obtain the data points, we employ the exact model to evaluate the MCMC moves and make
acceptance decisions in order to allow for both approximation schemes to be compared
on the same set of samples. For accepted sample, we can again ask the question how the
approximate methods, simhash and JL, would have judged the MCMC sample. We display
the results in a scatter plot with exact model judgements on the x-axis and the approximate
method on the y-axis. In the figure, there are eight subplots. The left column contains the
simhash comparison and the right column contains the JL comparison. The number of bits
increases with each row (32, 54, 128, 256).

In Table 3 we report a numerical comparison to corroborate the scatter plots. In
particular, for a fixed number of dimensions, we compare the two methods in terms of
the coreference F1 (B-cubed and MUC), their correlation (Spearman’s rho) with the exact
model, and their accuracy with respect to exact model’s decisions in accepting and rejecting
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Bits Algorithm B3 F1 MUC f1 Spearman’s rho Acc

256
simhash 77.6 87.7 93.2 97.8
jl 78.3 89.1 97.2 99.3

128
simhash 75.6 86.9 96.4 88.3
jl 75.9 87.4 95.2 98.3

64
simhash 62.8 81.8 81.2 93.1
jl 68.0 84.1 90.1 96.9

32
simhash 55.6 78.0 70.0 93.7
jl 66.5 83.6 81.9 94.6

Table 3: A comparison of SimHash and JL style cosine computations. Spearman’s rho and
accuracy are computed with respect to the exact cosine computations.

MCMC proposals. We find that a model based on JL cosine estimates are better correlated
with the exact model, and this translates into small improvements in coreference F1.

Appendix E. MinHash

E.1 Homomorphic MinHash

Background: MinHash Minhash [Broder, 1997a, Broder et al., 2000] is a locality-sensitive
hash function for Jaccard similarity, defined for binary vectors. Note that binary vectors
can also represent sets such that, the non-zero entries correspond to elements in the set. For
example, a binary vector in Rd is equivalent to a set Ω = {0, 1, 2, . . . , d− 1}. The Jaccard

similarity is a measure of resemblance between two sets S1, S2 ∈ Ω, defined as J = |S1∩S2|
|S1∪S2| .

Minhash applies a random permutation (which can be accomplished using a random hash
function e.g., seeded 64-bit murmur hash) π : Ω→ Ω, on a given set S ⊂ Ω and then extracts
the minimum value hπ(S) = min(π(S)). The probability that the minhash function for a
random permutation of a set computes the same value for two sets is equal to the Jaccard
similarity of the two sets ([Rajaraman and Ullman, 2010] illustrates an intuitive derivation).
Formally,

Pr(hπ(S1) = hπ(S2)) =
| S1 ∩ S2 |
| S1 ∪ S2 |

= J (41)

The Jaccard estimate is then given by Ĵ = 1
n

∑n
i=1 1

[
hπi(S1) = hπi(S2)

]
. The variance of

this estimate is Var(Ĵ) = 1
nJ(1− J).

Homomorphic MinHash: Unlike simhash for cosine similarity, the operations under-
lying the statistics for minhash are non-linear due to the element-wise minimum operation
that produces the underlying vector of hash values. Moreover, the set semantics on which
minhash relies are problematic because we need to maintain the invariance that a parent set
is equal to the union of a collection of child sets: when we perform a difference operation
between a parent set and a child set we cannot simply remove all of the child’s elements
from the parent since a sibling might also (redundantly) contribute some of those elements
to the parent.
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(a) 32-bit
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(b) 32-dim
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(c) 64-bit
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(d) 64-dim
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(e) 128-bit
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(f) 128-dim
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(g) 256-bit
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Figure 6: Comparing SimHash (left column) and JL (right column) versus exact cosine.
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To address this situation, we introduce additional non-negative integer variables as
counts that indicate the number of child sets that contribute the associated hash value. We
augment the n-dimensional minhash representation vS of each set S with an n-dimensional
vector of counts cS , in which each dimension corresponds to a minimum hash value. This
representation is similar to multiset semantics, but is in the hash space instead.

We observe that given the minhash values of two sets, it is relatively straightforward
to compute the minhash value of the union which is simply the minimum of the minhash
values of the two nodes being merged, i.e., hπi(S1 ∪ S2) = min(hπi(S1), hπi(S2)). To obtain
the corresponding counts, we either keep the count associated with the smaller hash value
if they are different (that is, we set cS1∪S2

i = cS
?

i where S? = argminSj∈{S1,S2}(hπi(Sj)), or

sum the counts if they are the same (that is, cS1∪S2
i = cS1

i + cS2
i ).

In case of set difference however, the computation is not trivial (and as we mentioned
earlier, the operation is not the standard set difference either). We consider the following
possible cases to illustrate our approach.

(a) hπi(S1) < hπi(S2) implies that in the original feature space, there is an element e such
that e ∈ S1 and e /∈ S2. In this case, hπi(S1 \ S2) = hπi(S1) and the corresponding
count is equal to cS1

i .

(b) hπi(S1) > hπi(S2) implies that in the original feature space, there is an element e
such that e ∈ S2 and e /∈ S1. Again in this case, hπi(S1 \ S2) = hπi(S1) and the
corresponding count is equal to cS1

i . Note that since we assume that a node being
subtracted was previously added to current node at some point, we can eliminate this
case.

(c) hπi(S1) = hπi(S2) i.e., the minhash values are equal. In this case, if cS1
i > cS2

i ,

hπi(S1 \ S2) = hπi(S1) and the count is cS1
i − cS2

i . We do not consider the case

cS1
i < cS2

i because of the same assumption as above, i.e., a node being subtracted was
previously added to current node.

However, when cS1
i = cS2

i , removing S2 from S1 leads to loss of information that can
not be retrieved without referring back to the original feature space. Recomputing the
minimum from scratch is a nonstarter because it would require keeping around the
original sparse vector representations that we are trying to supplant. Rewriting the
difference in terms of unions is also computationally expensive since it would require
traversing the entire tree to check what the new minimum value should be. Instead,
noting that minhash typically has hundreds of hash functions (e.g., n = 256) for each
set, we propose to ignore the hash values associated with zero counts, and employ the
remaining hashes to compute the Jaccard.

This strategy of ignoring hash values that have zero counts has consequences for both
bias and variance. First, since fewer hashes are employed, the variance increases, and if left
unchecked may culminate in a worst case in which all counts are zero and Jaccard can no
longer be estimated. However, we can periodically refresh the counts by traversing the trees
and hopefully we do not have to do such refresh operations too often in practice.

Second, since the hashes associated with zero counts are correlated, the estimate is no
longer unbiased. For example, consider the case when we merge the node S1 = {mustard}
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with the node S2 = {hot-dog, mustard}. Now, if we remove S2 from S1 ∪S2, the hash values
corresponding to the element “mustard” become zero. Consequently, the differentiating
information between (S1 ∪ S2) \ S2 and S2 is lost resulting in a biased Jaccard estimate, i.e.,
Ĵ((S1 ∪ S2) \ S2, S2) = 1. To address this problem, we modify the Jaccard estimate to make
better use of the zero-counts rather than simply ignore them, and this eliminates the bias in
some cases. However, we do not have a solution that works in every case.

Finally, there is also the question of how to perform union and difference for cases in
which the count is zero. For now, we ignore the zero counts during these operations, but are
currently exploring strategies for incorporating them to further reduce bias and variance.
Our approach is summarized in Algorithm 1 for the union and difference operations as well
as the Jaccard estimate computation (the function score).

Algorithm 1 Homomorphic MinHash

function Union(S1, S2)
hπi(S1 ∪ S2) = min(hπi(S1), hπi(S2))
if cS1

i = cS2
i then

cS1∪S2
i = cS1

i + cS2
i

else
cS1∪S2
i = cS

?

i where S? = argminSj∈{S1,S2}(hπi(Sj))

function Difference(S1, S2)
if hπi(S1) 6= hπi(S2) then

hπi(S1 \ S2) = h(S1), c
S1\S2

i = cS1
i

else if hπi(S1) = hπi(S2) then
if cS1

i > cS2
i then

hπi(S1 \ S2) = h(S1), c
S1\S2

i = cS1
i − c

S2
i

else
hπi(S1 \ S2) > h(S1), c

S1\S2

i = 0

function Score(S1, S2)
Ĵ = 1

n̂

∑
i 1
[
hπi(S1) = hπi(S2)

]
,∀i s.t. cS1

i > 0 and cS2
i > 0

n̂ is the number of hash function pairs with non-zero counts.

E.2 Homomorphic MinHash Results

Recall that our homomorphic minhash algorithm associates a count with each minimum
hash value that indicates the number of times that hash value was a unioned into the set
as a minimum. During the difference operation that can occur due to a split proposal in
hierarchical coreference, it is possible that these counts can become zero. Then, information
is lost because it is not possible to recompute the new minimum value without traversing the
entire tree, an operation that is expensive to perform in the inner loop of MCMC inference.
Therefore, as a possible remedy, we propose to ignore hash values that have a count of zero
in certain situations. In certain situations, this is unbiased5 A primary concern though,

5. in other cases it is biased and we should recompute the values in these cases, but we save this for future
work.
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is that as the number of samples increases, the number of entries with a zero count will
increase and (a) the variance of the estimate might increase and (b) the estimate might be
impossible to compute if all counts become zero.

We indirectly study (a) by comparing our homomorphic minhash estimates to the exact
Jaccard estimate in much the same we did for simhash (Figure 7). Each point in the
plot represents an MCMC sample, which we gather by running the exact model with no
compressive data structures as before. The x-axis is the difference in the exact Jaccard
similarity estimates of the context bags and the y-axis is the difference in exact Jaccard
similarity between the homomorphic minhash representations of these bags. Unlike simhash,
minhash employs multiple hash functions; therefore, we fix the number of bits to 64 and vary
the number of hash functions instead. We also fit a linear model to the points in order to
help assess the bias (as seen by how far off it is from the reference line), and find that indeed
our method introduces some bias. We further examine the percentage of hash functions have
a non-zero count. In particular, after running hierarchical coref in the previous experiment
for 100,000 samples, we look at the root level entities and measure what percentage of their
hash functions have counts that have gone to zero). The reason we look at root entities only
is that they are the most likely to have had difference operations applied to them since every
time MCMC proposes to split a sub-tree, the root must undergo a difference operation. We
find that on average about 16% of these hash-values have a non-zero count, and find that
78% or these representations have fewer than 25% non-zeros, 15% have between 25-50%
non-zeros, 4% have between 50-75% and the rest have above 75%.

As for (b), we check after each sample if it results in a hash representation for which all
its counts are zero, thus making Jaccard estimates impossible.6 We record for each of the
100,000 samples whether or not the sample results in a hash for which all counts are zero.
We find that this only happens for the 32 and 64 hash function variants, and even in these
cases, the percentage is small (1.4 and 1.7% respectively), and they are responsible for the
regimentation of points along the x-axis in Figures 7(a)–7(b). For 128 and 256 hash function
variants, this situation never occurs. This is encouraging as it means, from the perspective
of being able to compute an estimate, that we rarely need to refresh the values.

6. Actually, this is not entirely true since some estimates are possible because not all information is lost.
Technically a count of zero indicates that although we do not know what the minimum is, we know what
it is not, viz., the hash value associated with the count. Therefore, if it happens to be the case that
the representation we compare against (a) contains non-zeros counts everywhere and (b) has a hash an
identical hash-value for each hash function, we can conclude the Jaccard is zero. Our implementation
supports this case as a special case, but it is so unlikely to occur.
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(a) 32-hashes

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
Model score (with exact similarity)

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

M
od

el
 sc

or
e 

(w
ith

 m
in

ha
sh

 si
m

ila
rit

y)

Model comparison: approx vs exact similarity
linear fit (bias)
origin
identity
MCMC sample

(b) 64-hashes
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(c) 128-hashes
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Figure 7: Model score comparison with homomorphic minhash and exact sparse-vector
representations. The closer points are to the identity reference line, the better.


